返回主站|会员中心|保存桌面|手机浏览
118

苏州佰通生物科技有限公司

生物技术的研发及技术咨询服务;销售:非危险化工产品、化妆品。

新闻分类
  • 暂无分类
站内搜索
 
荣誉资质
友情链接
您当前的位置:首页 » 新闻中心 » Nat Commun:损伤的神经细胞可以向干细胞呼救
新闻中心
Nat Commun:损伤的神经细胞可以向干细胞呼救
发布时间:2015-10-13        浏览次数:34        返回列表
 

图片来源:medicalxpress.com

近日,刊登于国际杂志Nature Communications上的一项研究论文中,来自剑桥大学的研究人员发现,在多种疾病,比如多发性硬化症中损伤的神经细胞,可以同干细胞进行“谈话”,这种方式被认为是损伤神经细胞进行的呼唤“急救”。相关研究对于后期开发治疗影响髓鞘的障碍提供了新的思路,髓鞘是一种保护并且使得神经细胞绝缘的保护装置。

为了大脑和中枢神经系统可以正常工作,电信号必须沿着神经纤维快速传递,而这一过程通常是通过髓磷脂来促进神经纤维绝缘来实现的,在多发性硬化症中,神经纤维外部包裹的髓鞘就处于缺失或损伤的状态,进而就会引发患者机体物理性和精神性的障碍。

干细胞可以分化形成多种类型的细胞,其扮演着急救工具包的作用,可以帮助修复机体;在我们的神经系统中,干细胞可以产生新的髓磷脂,尤其是在多发性硬化症中其可以帮助恢复髓磷脂失去的功能;然而髓磷脂的修复往往会失败,最终引发持续性的残疾,为了理解这种修复为何会失败,以及设计新型促进髓磷脂修复的方法,研究人员就通过研究揭示了髓磷脂的修复机制。

当神经纤维失去髓磷脂,其就会处于活性状态,但相比健康纤维而言,其就会引导较低速度的信号传导,利用电记录的技术研究小组发现,损伤的神经纤维会同干细胞形成连接,这些连接和不同的神经纤维之间的突触连接一样。而形成的新型的突触连接可以使得受损的纤维通过释放谷氨酸盐同干细胞直接联系起来,谷氨酸盐是干细胞通过受体感知的一种化学物;这种交流对于指导干细胞形成新型髓磷脂非常重要,当研究人员抑制神经纤维的活性时,这种交流的能力就会被抑制。

最后研究者Karadottir说道,本文研究中研究人员首次研究发现,损伤的神经纤维可以通过利用突触连接来同干细胞进行交流,基于当前的研究数据,研究者就可以进行更为深入的研究来增强这种交流来促进多种疾病中的髓磷脂的修复。

 

 

doi:10.1038/ncomms9518
PMC:
PMID:

Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors

Hélène O. B. Gautier, Kimberley A. Evans, Katrin Volbracht, Rachel James, Sergey Sitnikov, Iben Lundgaard, Fiona James, Cristina Lao-Peregrin, Richard Reynolds, Robin J. M. Franklin & Ragnhildur T Káradóttir

 

Myelin regeneration can occur spontaneously in demyelinating diseases such as multiple sclerosis (MS). However, the underlying mechanisms and causes of its frequent failure remain incompletely understood. Here we show, using an in-vivo remyelination model, that demyelinated axons are electrically active and generate de novo synapses with recruited oligodendrocyte progenitor cells (OPCs), which, early after lesion induction, sense neuronal activity by expressing AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)/kainate receptors. Blocking neuronal activity, axonal vesicular release or AMPA receptors in demyelinated lesions results in reduced remyelination. In the absence of neuronal activity there is a ~6-fold increase in OPC number within the lesions and a reduced proportion of differentiated oligodendrocytes. These findings reveal that neuronal activity and release of glutamate instruct OPCs to differentiate into new myelinating oligodendrocytes that recover lost function. Co-localization of OPCs with the presynaptic protein VGluT2 in MS lesions implies that this mechanism may provide novel targets to therapeutically enhance remyelination.