研究者Robert S. Balaban说道,肌肉细胞中能量的快速分布机制可以改变科学家们对肌肉功能及作用的认知,同时也为研究人类健康和机体疾病带来了希望。文章中研究者对小鼠骨骼肌细胞的功能、线粒体结构以及生化组成进行了研究,利用3D电镜术及超分辨率光学成像技术研究者发现,大部分的线粒体都可以通过类似市政电网上的输电线路那样形成高连接性的网络。
这种线粒体的“电线”都具有电力传导性,利用特殊的探针研究者发现,大多数的线粒体都是通过联网的模式进行直接的电力交流或传输,这同时也就说明,线粒体具有电耦合性,而且可以快速分布于线粒体膜电压上,这就是ATP产生的原始能量。本文研究揭示了线粒体如何在肌肉中分布排列,线粒体的特殊排列方式可以使得潜在能量的流动以线粒体膜电压的形式通过细胞进行ATP的产生,随后帮助进行肌肉的收缩。
研究者Subramaniam指出,最初我们开发这些生物成像技术目的就是研究HIV-1的感染机制以及黑色素瘤细胞的结构改变,而让我们非常高兴的是本文中我们利用这些技术也阐明了肌肉中线粒体的排列机制以及供能策略。
揭秘肌肉细胞分布能量的基本策略或可帮助阐明疾病的诊断及治疗方向,本文研究就为开发新型的疾病医学诊断技术提供了一定帮助;未来研究中,科学家们将利用肌肉活检或复杂的非侵入性成像技术来解释肌肉细胞中线粒体网络的缺失如何影响多种疾病的发生。
PMC:
PMID:
Mitochondrial reticulum for cellular energy distribution in muscle
Brian Glancy, Lisa M. Hartnell, Daniela Malide, Zu-Xi Yu, Christian A. Combs, Patricia S. Connelly, Sriram Subramaniam & Robert S. Balaban
Intracellular energy distribution has attracted much interest and has been proposed to occur in skeletal muscle via metabolite-facilitated diffusion1, 2; however, genetic evidence suggests that facilitated diffusion is not critical for normal function3, 4, 5, 6, 7. We hypothesized that mitochondrial structure minimizes metabolite diffusion distances in skeletal muscle. Here we demonstrate a mitochondrial reticulum providing a conductive pathway for energy distribution, in the form of the proton-motive force, throughout the mouse skeletal muscle cell. Within this reticulum, we find proteins associated with mitochondrial proton-motive force production preferentially in the cell periphery and proteins that use the proton-motive force for ATP production in the cell interior near contractile and transport ATPases. Furthermore, we show a rapid, coordinated depolarization of the membrane potential component of the proton-motive force throughout the cell in response to spatially controlled uncoupling of the cell interior. We propose that membrane potential conduction via the mitochondrial reticulum is the dominant pathway for skeletal muscle energy distribution.